Los árboles están luchando por 'respirar' y secuestrar así el dióxido de carbono (CO2) que atrapa el calor en climas más cálidos y secos.

Esto significa que es posible que ya no sirvan como una solución para compensar la huella de carbono de la humanidad a medida que el planeta continúa calentándose, según un nuevo estudio dirigido por investigadores  e investigadoras de la Universidad de Penn State.

"Descubrimos que los árboles en climas más cálidos y secos esencialmente tosen en lugar de respirar. Están devolviendo CO2 a la atmósfera mucho más que los árboles en condiciones más frías y húmedas

MAX LLOYD, investigador de la Universidad de Penn State

"Descubrimos que los árboles en climas más cálidos y secos esencialmente tosen en lugar de respirar", dijo Max Lloyd, profesor asistente de investigación de geociencias en Penn State y autor principal del estudio publicado recientemente en Proceedings of the National Academy of Sciences (1). "Están devolviendo CO2 a la atmósfera mucho más que los árboles en condiciones más frías y húmedas".

 

Fotorrespiración

 

A través del proceso de fotosíntesis, los árboles eliminan CO2 de la atmósfera para producir un nuevo crecimiento. Sin embargo, en condiciones estresantes, los árboles liberan CO2 a la atmósfera, un proceso llamado fotorrespiración. Con un análisis de un conjunto de datos global de tejido de árboles, el equipo de investigación demostró que la tasa de fotorrespiración es hasta dos veces mayor en climas más cálidos, especialmente cuando el agua es limitada.

El umbral para esta respuesta en los climas subtropicales comienza a cruzarse cuando las temperaturas diurnas promedio exceden aproximadamente los 20 grados Celsius y empeora a medida que las temperaturas aumentan aún más

Descubrieron que el umbral para esta respuesta en los climas subtropicales comienza a cruzarse cuando las temperaturas diurnas promedio exceden aproximadamente los 20 grados Celsius y empeora a medida que las temperaturas aumentan aún más.

Los resultados complican una creencia generalizada sobre el papel de las plantas a la hora de ayudar a extraer (o utilizar) carbono de la atmósfera, proporcionando nuevos conocimientos sobre cómo las plantas podrían adaptarse al cambio climático. Es importante destacar que las/los investigadores señalaron que a medida que el clima se calienta, sus hallazgos demuestran que las plantas podrían ser menos capaces de extraer CO2 de la atmósfera y asimilar el carbono necesario para ayudar al planeta a enfriarse.

Hemos desequilibrado este ciclo esencial

MAX LLOYD

"Hemos desequilibrado este ciclo esencial", afirmó Lloyd. "Las plantas y el clima están inextricablemente vinculados. La mayor reducción de CO2 de nuestra atmósfera proviene de los organismos fotosintetizadores. Es un gran factor en la composición de la atmósfera, lo que significa que los pequeños cambios tienen un gran impacto".

Actualmente, las plantas absorben aproximadamente el 25% del CO2 emitido por las actividades humanas cada año, según el Departamento de Energía de Estados Unidos, pero es probable que este porcentaje disminuya en el futuro a medida que el clima se caliente, explicó Lloyd, especialmente si el agua es más escasa.

El mundo se calentará, lo que significa que las plantas serán menos capaces de absorber ese CO2".

"Cuando pensamos en el futuro climático, predecimos que el CO2 aumentará, lo que en teoría es bueno para las plantas porque esas son las moléculas que respiran", dijo Lloyd. "Pero hemos demostrado que habrá una compensación que algunos modelos predominantes no tienen en cuenta. El mundo se calentará, lo que significa que las plantas serán menos capaces de absorber ese CO2".

En el estudio, las/los investigadores descubrieron que la variación en la abundancia de ciertos isótopos de una parte de la madera llamada grupos metoxilo sirve como marcador de la fotorrespiración en los árboles. Se puede pensar en los isótopos como variedades de átomos, explicó Lloyd. Así como es posible que tenga versiones de helado de vainilla y chocolate, los átomos pueden tener diferentes isótopos con sus propios "sabores" únicos debido a las variaciones en su masa.

El equipo estudió los niveles del "sabor" metoxilo del isótopo en muestras de madera de una treintena de especímenes de árboles de una variedad de climas y condiciones en todo el mundo para observar las tendencias en la fotorrespiración. Los especímenes provienen de un archivo de la Universidad de California, Berkeley, que contiene cientos de muestras de madera recolectadas en las décadas de 1930 y 1940.

 

La velocidad a la que las plantas absorben carbono

 

"La base de datos se utilizó originalmente para capacitar a los forestales sobre cómo identificar árboles de diferentes lugares del mundo, por lo que la reutilizamos para esencialmente reconstruir estos bosques y ver cómo de bien estaban absorbiendo CO2", dijo Lloyd.

Hasta ahora, las tasas de fotorrespiración solo podían medirse en tiempo real utilizando plantas vivas o especímenes muertos bien conservados que retuvieran carbohidratos estructurales, lo que significaba que era casi imposible estudiar la velocidad a la que las plantas absorben carbono a escala o en el pasado, explicó Lloyd.

Ahora que el equipo ha validado una forma de observar la tasa de fotorrespiración utilizando madera, dijo que el método podría ofrecer a los investigadores una herramienta para predecir qué tan bien los árboles podrían "respirar" en el futuro y cómo les fue en climas pasados.

La cantidad de dióxido de carbono en la atmósfera está aumentando rápidamente; ya es mayor que en cualquier otro momento de los últimos 3,6 millones de años, según la Administración Nacional Oceánica y Atmosférica.

La cantidad de dióxido de carbono en la atmósfera está aumentando rápidamente; ya es mayor que en cualquier otro momento de los últimos 3,6 millones de años, según la Administración Nacional Oceánica y Atmosférica. Pero ese período es relativamente reciente en el tiempo geológico, explicó Lloyd.

El equipo ahora trabajará para desenterrar las tasas de fotorrespiración en el pasado antiguo, hasta hace decenas de millones de años, utilizando madera fosilizada. Los métodos permitirán a los investigadores probar explícitamente las hipótesis existentes sobre la influencia cambiante de la fotorrespiración de las plantas en el clima a lo largo del tiempo geológico.

"Soy geólogo, trabajo en el pasado", dijo Lloyd. "Entonces, si estamos interesados en estas grandes preguntas sobre cómo funcionaba este ciclo cuando el clima era muy diferente al actual, no podemos usar plantas vivas. Es posible que tengamos que retroceder millones de años para comprender mejor cómo podría ser nuestro futuro".

Referencias